NK
const developer = {
name: "Nikhil Koche",
title: "AI Engineer",
specialization: "GenAI & ML",
location: "Canada",
experience: "5+ years"
}
# Navigation Menu
class
Portfolio:
# Social Links
social_links
= {
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Professional Summary
class AIEngineer:
def __init__(self):
self.role = "AI & ML Engineer"
self.experience = "5+ years"
self.specialization = [
"Generative AI & LLM Applications",
"Cloud-native Development",
"Full-stack Solution Delivery"
]
def get_achievements(self):
return [
"Pioneered scalable LLM apps with LangChain, OpenAI, and Hugging Face",
"Cut deployment time by 40% and lowered infrastructure costs",
"Orchestrated systems supporting 1,000+ daily interactions",
"Resolved 95% of data issues through automated validation",
"Drove 15% efficiency boost and 20% reduction in manual errors"
]
# Professional Experience
class Experience:
def ai_ml_engineer_current(self):
company = "AI Hub, Durham College"
location = "Oshawa, Ontario"
duration = "Sept 2024 - Present"
responsibilities = [
"Led delivery of multiple AI projects with enterprise clients",
"Architected LLM-driven multi-agent systems and forecasting models",
"Deployed solutions on Azure and AWS infrastructure"
]
def ai_ml_engineer_projects(self):
duration = "Jul 2022 - Aug 2024"
focus = [
"Instagram Automation Tool - Borderscapes Immigration",
"AI for Scientific Literature - PhD Research Assistant",
"Vision-Based Inventory Management System",
"Business Intelligence Dashboard - Progetto Ecommerce"
]
def software_developer(self):
company = "ICEICO Technologies Pvt. Ltd"
location = "Nagpur, India"
duration = "Nov 2020 - Jun 2022"
achievements = [
"Migrated MEAN stack system to Ironclad, improving efficiency by 25%",
"Accelerated deployment speed by 40% through microservices transition"
]
# Featured Projects
class Projects:
project = {
name: "Multi-Agent KPI Insights Platform",
tech: ["LangChain", "SQL", "Power BI"],
description: "LLM-powered system automating KPI identification from enterprise databases",
impact: "70% reduction in manual analysis time",
status: "Production"
}
project = {
name: "AI News Platform - TorontoToday",
tech: ["Python", "NLP", "Multi-source APIs"],
description: "Conversational assistant for city news summarization",
impact: "60% decrease in research time",
status: "Production"
}
project = {
name: "Volumetric Food Estimation",
tech: ["Computer Vision", "CNN", "Deep Learning"],
description: "Deep learning model for food volume prediction from images",
impact: "90% prediction accuracy on 1,000+ samples",
status: "Research"
}
project = {
name: "Instagram Automation Tool",
tech: ["Python", "Graph API", "OpenAI GPT-4o"],
description: "AI chatbot for automated Instagram conversations",
impact: "1,000+ daily interactions, 60% time reduction",
status: "Production"
}
project = {
name: "AI Scientific Literature Q&A",
tech: ["LangChain", "FastAPI", "PineconeDB"],
description: "Document-driven Q&A tool for PhD research",
impact: "95% accuracy, 70% reduction in manual scanning",
status: "Production"
}
project = {
name: "Vision-Based Inventory Management",
tech: ["YOLOv8", "Vertex AI", "SingleStore"],
description: "Intelligent inventory tracking using object detection",
impact: "95% accuracy, 50% efficiency improvement",
status: "Production"
}
# Technical Skills & Expertise
class Skills:
# GenAI & LLM Tools
genai_tools = [
"Prompt Engineering", "Chain-of-Thought Reasoning", "Zero-shot/Few-shot Learning",
"LangChain", "OpenAI (GPT-4/4o)", "Hugging Face Transformers",
"RAG", "Vector Databases (Pinecone, FAISS, Qdrant)",
"Open-Source LLMs (LLaMA, Mistral, Qwen)", "LLM Fine-Tuning"
]
# Machine Learning & AI
ml_ai = [
"Deep Learning", "NLP", "Computer Vision", "Object Detection (YOLOv8)",
"TensorFlow", "PyTorch", "Scikit-learn", "XGBoost", "LightGBM",
"OCR (Tesseract, PaddleOCR)", "MLflow", "Vertex AI"
]
# Cloud & DevOps
cloud_devops = [
"AWS (EC2, Lambda, S3, DynamoDB, RDS, CloudWatch)",
"Azure (Azure ML, Cognitive Services)", "GCP (Vertex AI)",
"Docker", "Kubernetes", "Terraform", "CI/CD (GitHub Actions)"
]
# Software Engineering
software_engineering = [
"Python", "JavaScript", "C/C++", "HTML5", "CSS3", "React", "TypeScript",
"RESTful APIs", "GraphQL", "Flask", "FastAPI", "Microservices"
]
# Data Engineering & Databases
data_engineering = [
"PostgreSQL", "MySQL", "MongoDB", "DynamoDB",
"ETL/ELT Workflows", "Apache Kafka", "Amazon Kinesis",
"Amazon S3", "Amazon Redshift", "AWS Glue", "Amazon Athena"
]
# BI & Visualization
bi_visualization = [
"Power BI", "Tableau", "DAX", "Power Query",
"KPI Dashboards", "Interactive Visual Analytics", "Report Automation"
]
# Education
class Education:
def post_graduation(self):
degree = "Post Graduation in Data Analytics and AI"
specialization = "Design and Implementation"
institution = "Durham College, Ontario, Canada"
def bachelor_degree(self):
degree = "Bachelor of Engineering"
specialization = "Computer Technology"
institution = "RTMNU University, India"
# Certifications
class Certifications:
certifications = [
"AWS Certified Cloud Practitioner",
"Red Hat Certified System Administrator (RHCSA)"
]
# Contact Information
class Contact:
def get_contact_info(self):
return {
phone: "905-782-9278",
location: "Canada",
specialization: "AI Engineer | Data Engineer | AI & ML | AI-OPS"
}
# Let's Connect!

Passionate about AI/ML innovation and always interested in discussing cutting-edge projects and opportunities in Generative AI, LLMOps, and cloud-native solutions.